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Abstract. The particle decay problem in the random-set approach leads naturally to theq-
Poisson distribution. Motivated by the fact that in the classical quantum mechanical description
of particle decay one ends up with a composite system, we construct a Hilbert space using the
eigenstates of the average particle number operatorN . In this approach, time is represented by
integer multiples of an observation quantumτ . It is shown that these considerations lead to the
redefinedq-oscillator and an element ofSUq(n) acts like a reversal operator onn time-ordered
states.

Consideration of random sets in the definition of new discrete probabilities has hinted at
the applicability of these probability distributions to interesting problems in physics. It has
been shown that in the context of random sets the non-extensivity of classical set theory
gives rise to a unitary quantum-group symmetry associated with the fact that when random
sets are joined the total number of elements is independent of the order in which this is
carried out [1]. On the other hand,q-deformed Stirling numbers, which are related to
q-bosons [2, 3], turn out to be also important from the point of view of random sets [4].

In this paper we wish to apply the random-set approach to the particle decay problem.
We start by defining a finite source setS of M elements, a target setA and a probability
dp = λ dt , the probability of making a choice from the setS in an infinitesimal time interval
dt . At time t = 0, the setA will be null. The chosen elements ofS will only be added
to A if and only if they already do not exist inA. Note that this is in accordance with the
mathematical definition of a set. The probability of havingm elements in the setA at time
t will be denoted byPm(t). This probability can be defined by using a simple iteration: In
order to havem+1 elements in the setA at timet+dt , one has eitherm elements at timet
and makes a choice fromS which does not already exist inA during the interval dt , or one
has alreadym+1 elements inA at timet . For the latter case, one either should not make a
choice or should choose an element which already exists in the setA. This definition gives
the following differential recurrence relation forPm(t):

Pm+1(t + dt) = λ dt

(
1− m

M

)
Pm(t)+

[
(1− λ dt)+ λ dt

m+ 1

M

]
Pm+1(t). (1)

If the source setS is taken to representM radioactive nuclei, assuming that each nucleus
can only decay once,Pm(t) becomes the probability of havingm decayed nuclei at timet .
It is possible to solve (1) to obtain an explicit formula forPm(t):

Pm(t) =
(
M

m

)(
e−λt/M

)M−m(
1− e−λt/M

)m
(2)
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which can also be obtained by the following reasoning. The decay process is a Poisson
process and initially the decay width for the whole set isλ. Since there areM elements in
the setS the decay width for one particle isλ/M. Hence the probability that this particle
will decay in time intervalt is p = 1− e−λt/M . ThusPm(t) is a binomial distribution for
M trials, each trial being the decay of one of theM particles. In order to end up with
m decayed nuclei, we have to choosem particles out ofM with M −m of them undecayed
andm decayed. This yields equation (2) exactly. Note that the usual Poisson distribution
is obtained asM goes to infinity. Hence we will callPm(t) the q-Poisson distribution.
Here we should emphasize that this distribution is different to that appearing in previous
literature [5].

The average number of decayed particles is given by

〈m〉 =
M∑
m=0

mPm(t) = M
(
1− e−λt/M

) = −1− qλt
ln q

(3)

with q = e−1/M . Note that at timet = 0 all particles are undecayed and the setA is empty.
Motivated by the analogous problem of particle decay in quantum mechanics, we now

would like to set up a Hilbert space in which we can represent our decaying nuclei. At the
time t = 0, the state associated with the decay process, and thus with the target setA, will
be represented by the ground state,|0〉, since in our initial configuration we have started
with undecayed particles. As time passes, the nuclei will decay one by one and finally as
time t → ∞, the target setA will have the same cardinality as the source setS. Thus, it
is feasible to denote the final state at timet = ∞ by |M〉. It may be worth noting that the
creation operator acting on the state vector is also associated in some way with the flow of
time, since we are continuously monitoring the decaying nuclei in time. The states between
t = 0 andt = ∞ can be expressed by the use of a density matrix according to the classical
quantum mechanical approach:

ρ(t) =
M∑
m=0

|m〉 Pm(t) 〈m|. (4)

If we take the dynamical variable of this system we are observing as the number of decayed
particles, we should associate a Hermitian operator with it in order to be able to measure it:

N |m〉 = m|m〉 m = 0, 1, 2, . . . ,M. (5)

The average number of decayed particles then becomes〈m〉 = Tr(Nρ(t)). However, in
this standard quantum mechanical description, our system is a composite one and a particle,
while decaying, cannot be represented by a pure state which is an eigenstate ofN .

In physics, to simplify a problem, it is best to work in the simplest and most convenient
basis. Starting from this idea, we would like to prepare a recipe in which even a single
particle, while decaying, can be represented by a pure state. Since a state is, in fact, identified
with the probability distributions of its observables, we argue that we should build a new
Hilbert space which will be composed of the eigenstates of an operator corresponding to
the average number of decayed particles. In quantum mechanics a Hermitian operator is
associated with each observable. The result of this new approach is to associate a Hermitian
operator with the average number of decayed particles which is the only relevant, physically
measurable quantity in this problem.

To be able to measure the average number of decayed particles one needs, in fact, a
small amount of time in which the averaging process is performed. We will denote this
quantum of time byτ and represent our conventional time by multiples of it:

|t〉 = |nτ 〉 n = 0, 1, 2, . . . . (6)
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Since our goal was to represent even a single decaying particle by a pure state, we will
reduce the problem ofM decaying nuclei to the decay problem of a single nucleus. This
single nucleus, evolving in time, will be the system under observation. The action of the
operatorN , measuring the average number of decayed particles on this system will be the
M → 1 limit of equation (3), and instead of using a particular notation to represent the state
of our decaying nucleus we will simply write states in which time is the only parameter.
This notation is convenient for this problem, since the evolution of the nucleus under study
depends only on time. The operatorN which describes the average number of decayed
particles satisfies

N |nτ 〉 = (1− e−λnτ
)|nτ 〉. (7)

The above equation is valid for anyn and defines a parameterq given byq = e−λτ . These
time states are eigenstates of a Hermitian operator with different eigenvalues; thus they are
orthonormal. The creation operatora† which usually causes the state under investigation to
evolve by one step, can now be thought of as the time evolution operator, since we have
chosen to represent the state of our nucleus only by the evolution of time. It will cause an
increment in time by one observation quantumτ :

a†|nτ 〉 = αn|(n+ 1)τ 〉 (8)

whereαn is arbitrary. One can take the Hermitian conjugate of the above equation to find
the action ofa, the Hermitian conjugate ofa† as

a|nτ 〉 = αn−1|(n− 1)τ 〉. (9)

We see that the annihilation operatora alters the current time state or equivalently the state
of the nucleus under investigation by one observation unitτ in the backward direction.
The resemblance of this duality to the Feynman interpretation of antiparticles hints at the
possibility of developing a formalism wherea† will be related to the time evolution of
particles, whereasa will be related to the time evolution of antiparticles. Naturally, the
average number of decayed particles is related to time, and as usual we defineN as

N = a†a. (10)

The arbitrary factorα arising in the definition of creation/annihilation operators can now be
found by the use of equations (7), (8), (9), (10):

N |nτ 〉 = a†a|nτ 〉 = |αn−1|2 |nτ 〉
|αn−1| =

√
1− qn.

(11)

The phase of these coefficients,αn, can be absorbed into the vectors|nτ 〉 without changing
their orthonormality. Equation (11) enables us to find the commutation relation betweena

anda†:

(aa† − qa†a)|nτ 〉 = (1− q)|nτ 〉. (12)

This is indeed the redefinedq-oscillator which is well known in the literature [6]. In the
commutation relation implied by (12)

aa† − qa†a = 1− q (13)

a can be represented by theq-difference operator, defined on functionsf (z) by

D f (z) = z−1(f (z)− f (qz)) (14)

whereasa† can be represented by the multiply-by-z operator, defined by

Z f (z) = zf (z) (15)
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which satisfies

(DZ − qZD) f (z) = (1− q)f (z). (16)

For z ∈ C, a coherent-state representation can be constructed [6].
One might expect from the beginning a non-commuting algebra for the time evolution

operators by arguing on the physical principle of causality. However, it is interesting to
see that this simple example yielded theq-oscillator algebra as the associated quantum
mechanical algebraic framework.

Up to this point we have concentrated on the average number of the decayed particles. It
is also possible to deal with the number of undecayed particles. Since we are now working
with a single particle, this number is given by 1−N . The eigenvalues of this new operator,
which we prefer to denote asb†b, will clearly be qn. The fact that we are dealing with a
single particle can now be written algebraically as

a†a + b†b = 1. (17)

The action of the operatorsb andb† on the particle states, or equivalently on the time states,
cannot be that of a lowering or raising operator, simply becauseb†b does not have a zero
eigenvalue over the states|nτ 〉 for any finiten. However, it does have a zero eigenvalue
on the state|∞〉 which corresponds ton→∞. Acting on this state byb givesb|∞〉 = 0,
so this state can be thought of as the ground state of the operatorb. However,b† cannot
be a lowering or raising operator on this state since∞± 1= ∞. Thus, the simplest action
which can be associated with these operators is a change in the normalization of a state.
Representing the phase of this factor by iβ we can define the action of the operatorb on
the eigenstate as

b|nτ 〉 = qn/2eiβ |nτ 〉. (18)

Since we know the action of the operatorsa, b and their Hermitian conjugates on the states
which form our Hilbert space, we can now proceed to calculate the commutation relations
between these operators. In fact, they satisfy the very well known quantum-group algebra
with parameter̃q = √q:

ab = q̃ ba
ab† = q̃ b†a
bb† = b†b
aa† + q̃2 bb† = a†a + b†b = 1

(19)

so that the 2×2 matrix constructed from these four operators will be an element of the
quantum groupSUq̃(2):

U2 =
(
a −q̃ b
b† a†

)
∈ SUq̃(2). (20)

Note that the state|∞〉mentioned in the above paragraph is a one-dimensional representation
of this algebra that satisfies

a|∞〉 = a†|∞〉 = |∞〉 (21)

b|∞〉 = b†|∞〉 = 0. (22)
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The 2×2 matrix U2 naturally acts on two time states that we will bring together as
a column matrix and name a doublet. At the beginning we will form our doublet from
arbitrary states to have a general insight on the action of the operatorU2:(
a −q̃ b
b† a†

)( |mτ 〉
|nτ 〉

)
=
( √

1− qm|(m− 1)τ 〉 −
√
qn+1 eiβ |nτ 〉

√
qm e−iβ |mτ 〉 +

√
1− qn+1|(n+ 1)τ 〉

)
. (23)

For ordered time states, i.e. forn = m− 1, the above complicated formula boils down
to a much simpler one:

U2

( |mτ 〉
|(m− 1)τ 〉

)
=
(
c1|(m− 1)τ 〉
c0|mτ 〉

)
(24)

with

c0 =
√

1− qm −√qmeiβ

c1 =
√
qme−iβ +

√
1− qm.

One can observe that except for the coefficientsc1 andc0, the action of the operatorU2 is
to reverse the ordering of these states. Thus one can think the operatorU2 as a projective
‘time reversal operator’ since it returned us, up to some coefficients, the time-ordered particle
states in reverse order. In practice, by choosing an appropriate value for the arbitrary phase
factor in equation (14), one can simplify these coefficients. For example, forβ = π/2, one
obtains

c = c0 = c1 =
√

1− qm − i
√
qm. (25)

Thus we can write the action of the operatorU2 on time-ordered states as

U2

( |mτ 〉
|(m− 1)τ 〉

)
= c

( |(m− 1)τ 〉
|mτ 〉

)
. (26)

The role ofSUq(2), i.e. the gathering of operatorsa, a†, b, b† into an SUq(2) matrix as
in (20), is not essential for the particle decay problem. However, it is interesting that this
arrangement acts as a time reversal operator. This behaviour of interchanging the order of
the states in a doublet deserves more attention and we will investigate it further. However,
from now on we will only be interested in the projective properties of the operatorU2 and
of the other operators which will be derived from it. To study the action of such an operator
on state triplets, we consider the matrices

A1 =
 U2

0
0

0 0 1

 A2 =
 1 0 0

0
0

U2

 (27)

thenA = A1⊗̇A2⊗̇A1 becomes an element ofSUq(3). Here ‘⊗’ denotes the tensor product
and ‘·’ denotes the matrix product as usual. On the other hand, the operatorU3 = A1·A2·A1

acts on the time-ordered triplets as an order reversing operator up to some coefficients which
we omit:

U3

 |mτ 〉
|(m− 1)τ 〉
|(m− 2)τ 〉

 ∼
 |(m− 2)τ 〉
|(m− 1)τ 〉
|mτ 〉

 . (28)

Similarly, one can construct a generalized operatorUn using the building-block matrices of
SUq(n) [7] and taking their matrix products. This generalized matrix operatorUn will act
on ordered staten-tuples. We would like to emphasize that thisUn is not an element of the
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quantum groupSUq(n). For example,SUq(3) is obtained by matrix multiplyingSUq(2)
matrices of the form (27) where different matrices have independent oscillator structure that
commute. However to obtain (28) the matricesA1 andA2 should be taken to belong to
the same oscillator algebra (19) in the matricesU2 given by (20). The action ofUn can be
written projectively (up to complex factors multiplying the states) as

Un


|mτ 〉
...

|(m− n+ 1)τ 〉

 ∼

|(m− n+ 1)τ 〉

...

|mτ 〉

 . (29)

Since we have seen that this generalized operator reverses the time-ordered states of
our system, we will call it a projective time reversal operator. Admittedly, this concept of
a time reversal operator is rather unconventional. However, it comes out naturally from the
further investigation of the solution of our initial problem: representing a single decaying
nucleus by the eigenstates of a Hermitian operator. While studying this problem, we have
encountered the concept of the time observation quantumτ and the quantum-group structure.
A requirement of this quantum-group description of decaying particle is to fix the time that
the observation starts and to name that instantt = 0, so that our particle decays slowly
starting fromt = 0 up to t = ∞, instead of a classical, abrupt, unpredictable decay. We
believe that this new description is interesting and is open to further development.
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